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The sufficient conditions are established for the existence of a stable limit 

cycle for systems of the form 

2’ = y, y’ = - g (5) - fo (2) y - . . . - fn (5) yn 

for n = 2 and n = 2m. f 1. The conditions of the theorem of existence and 

uniqueness of the solution are assumed to hold. 

1. Consider the system 

2’ = y. Y = -Y Vl (4 ?/ + fo (41 - g (4 (I.11 

introducing the notation 

r (5) = 2 ‘c F12 (x) g (5) dx +- f 1;‘, (a) F (L) fo (5) dx 

‘0 '0 

Q (2) = r (x) - - 2 Fz(x). 

Theorem 1. System (1.1) has at least one stable limit cycle, provided that the 
following conditions hold : 

1. Numbers a < b < 0 < c < d and h > 0 exist such, that the functions F (2) 
and c” (T) have the following consecutive signatures : 

g(z)<0 for xE(a,O), g (2) > 0 for z E (0, d) 
F(z)<0 for s~(a,b), F(x)>0 for s~(b,O) 
F (2) < 0 for z E (0, c), F (I) >0 for x E (c. d) 
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‘* M = min IQ (4 Q (4) > Q (x) + [ 1/ - A-‘FP (2) F (x) g ($2) + ‘la 1 F (4 II” 
for x E lb, c] 

39 $0 P)<O 

Proof. Let us consider the family of curves 

Q, (x, y) = PI’ (5) 9 + FI (2) F b) Y + F (5) = c 

From this we have 

(1.2) 

(i-3) 

Let ?n = Sup {Q (x)} for b Q x < c and M = min {Q (a), Q (a)}. Using arguments 

identical to those in [l] we can show that for C E (m, M] Eq. (1.2) defines a family 
of simple closed curves enclosing each other and the coordinate origin and such, that 
C increases on passing from the inner to the outer curves. Differentiating (1.2) we 

obtain, by virtue of system (1.1) and noting that F,‘(x) - F1 (x)/t (x) = 0, 

d@/dt= 49 - FI (4 F (4 g (4 (1.4) 

We shall show that on the curve Q, (x, Y) = n4, d@ / dt < 0 . 
In accordance with Condition 1 we have, on the intervals (a, b) and (c, d), Fl (x) F 

(x) g (x) > 0. Consequently d@ / dt < 0 on the parts of the curve lying between the 
straight lines x = a and x = G,andbetween x=c and x= d. 

Let us determine the sign of d@ / dt on the interval Ib, cl on the upper arc Y = ~1 (x). 

and on the lower arc y = ya (x) of the curve, with y, (x) and y8 ix) defined by (1.3) in 
which the plus and minus signs are taken appropriately. 

Let b < x < 0. Then F (z) > 0 and from the Condition 2 we have 

YJ (x) > V - h-‘Pi (x) F (z) g (x) 

The latter, together with (1.4), imply that on the arc Y = Yr (x) , dcD/ df < 0 i Further, 

since F (+) > 0, then -Ys (x)‘> y1 (x). Consequently, d4 / dt < 0 on the arc Y = y,, (5). 
Thus da, / dt < 0 for x E (b, 0) on both the upper and lower arc of the curve CD (r, y) = 
M. We can show in a similar manner that da) I dt < 0 on this curve also in the inter- 

val (0, c). 
Let us consider another family of curves 

9p (x7 Y) = ‘1% ?? + G (x) = C (1.5) 

It is clear that this is also a family of simple closed curves enclosing each other and 

the coordinate origin and such, that C increases on the passage from the inner to the 

outer curves, Diffe~ntiating (1.5) we obtain, by virtue of (1.1). 

dcp / dt = -ap [;pu’1 (x) + fo (x)1 

At the point 0 (0, 0) we obtain ?Ifl (x) + f. (I) = f. (0) < 0 (according to Condition 
3). Consequently &P I dt Z U on the curves belonging to (1.5) and corresponding to 
sufficiently small C. 

Taking a curve belonging to (1.5) on which ds, I dt >, 0 and the curve @ (x, Y) = M 
on which dQt, / dt < 0, we obtain an annulus contained between these two curves, and 
all trajectories of the system (1.1) are directed into this annulus. Since the annulus has 
no singularities, it contains at least one stable limit cycle. 
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The proof shows clearly that drD f dt < 0 not only on the curve Q, (2, y) = M. but 

also on any curve @ (z, y) = C, where C E (m, M], provided that the inequality in Con- 
dition 2 holds when ikf in this condition is replaced by C. in particular, d@ 1 dt < 0 

on rhe curve Ur (r, y) = N, where 

N =i sup {Q (z) + [ v - h-‘p? (5) i” (2) g (2) + ‘ja i F k) 1 I’)1 if N>O 

Thus we obtain a certain estimate for the position of the limit cycle on the phase plane. 

It lies in the region bounded by the curve Q, (2, y) = N. 

2, Let us consider the system 

x.=y, y’ = -Yf@.Yf-g(4 (2.t) 

f (zt Yf = 5 fk@)?/k 
k=o 

Theorem 2. System (2.1) has at least one stable limit cycle, provided that the 

following conditions hold : 
1. A number K exists such, that jam (2) > K > 0 for all z , 

2. lim z-(3m-k)jk (2) = 0, 
x-+20 

k = i, 2, . . . , 2m - 1 

3, fo PI < 0, fo (z)++ 00 for 5 -.+ $- 00 and z--t - 00 
X 

e sg (3) >0 for s#O, 
s 

g (.z) dz -+ + co for z-f 00 

Proof. Assume that the to~~aphic’fami~ for the system (2.1) is represented by 

i N 

Differentiating this equation we obtain, by virtue of the system (2. l), 

dcD I dt = -+f (2, Y) (2.2) 

We shall show that a number R > 0 exists such, that j (x, y) > 0 on any circumference 
x = ~COS~, y = rsin8 for which T >R. At the points of the circum’ference we have 

am 

j (x, y) = 2 rk sink ejk (r cos e) = F (r, 0) 
o,<r<+oo 
0<8<22n 

(2.3) 

k=O 

Let us inspect the sign of this function in the upper semiplane, i. e, for 0 < 8 g Z. 

By the condition that fo (fm) = -t- 0;) we can find a number r1 such, that for r > r,, 
the inequalities F (P, 0) > 0 and F (r, n) > 0 hold. Since the function P (r, 8) is con- 
tinuous , a number 8, exists such, that when r > rl, F (r, 0) > 0 for 6 E: [O, B,] and 

0 E [Jr - Or, n]. By Condition 1 of Theorem 2, Eq, (2.3) implies that a number ra 
exists such, that F (r, n I 2) > 0 when P > ,2. But in this case a number 0, can be found 

such that F (r, 0) > 0 for 8 E (n / 2 - Bo, x / 2 + f3,) and r > r,. 
It remains to confirm that It’ (r, W) > 0 for sufficiently large r when 0 E (&,n / 2 - 

0,) and 0 E (n / 2 + 8,, 3t - 8,). By Condition 2 of Theorem 2, a number r3 can be 
found for any e > 0 such, that for all 0 belonging to these two intervals when [ r cos t) 1 > 
r3, and consequently for r > ~3, the following inequality holds: 

1 fk (r ~0s FJ) I< rzn-’ 1 c0S 0 lam-k& < r2nz-ke (k=1,2,...,2m--If 

For these r and B we have 
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Clearly, in each of these two intervals sin 0 > sin d,. Therefore, taking the Condition 1 
into account, we have 

siflsm Oirm (r cos 0) - 8J >sinem h-K_ $1 

Setting ei < K sin’m OI we obtain 

sin2” O Itrn (r cos 0) - aI > 0 

with r > F8, 8 E (6,, n / 2 - 0,) and 8 E (W / 2 f O,, .rl - Or)* 

By Condition 3 a number M > 0 exists such, that 

f. (rcos O) + M >, 0. 

(2.5) 

for any values of the product PCOS 8, i. e. for any r and 8. Taking into account this 
inequality as well as (1.5) we can assert, that a number ~4 can be found such that when 

r>r4, 
ram [sintm e fzm (r cos e) - el] -j- [/o (F cos 0) i M] - Al > 0 

From (2.4) and (2.6) follows 
‘3%--t 

(2.6) 

for F > mnx (r3, r4}, 0 E (01, n / 2 - eo) and e E (31 i 2 + eo, n - 0,). By equality (2.3) 
which defines the function F (r, e), the inequality (2.7) is equivalent to the statement 
that P (r, O) > 0 for the r and O shown above. Setting 12, == max {rIr r2, 73r rl] we 

find that f (F, 8) > 0 for O E {O, nl and r > I?,. Similarly, we can prove that a number 

12, exists such that F (F, 8) > 0 for F > Rz and x < O < 2x. 
Thus if R = max (H,, I?,}, then I; (r, 8) > 0 for r > R and O E iO, 2n]. This means 

that f (I, y) 2 0 on any circle with center at the coordinate origin and of radius r > R, 

i, e, t (z, y) > 0 at all points of the plane lying outside the circle of radius N. In par- 

ticular, f (x, y) > 0 on any curve belonging to the family (D (r, 9) = C lying outside 

this circle. But then , according to (2.2), on these curves we have &D / dt < 0, On the 
other hand, by Condition 3 f (O, 0) = f. (0) < 0. Consequently f (r, y) < 0 in suffici- 

ently small vicinity of the coordinate origin and, according to (2.2), d@ / dt & 0 on 
the curves (4, (2, y) = c for sufficiently small values of C. 

Taking together one of these curves and any other curve of the same family lying 
outside the circle of radius R we obtain an annular region contained between these 
curves, and all trajectories of (2.1) are directed into this annulus, Since this region has 
no singularities, it contains at least one stable limit cycle. 
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